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Abstract

Solutions for transonic viscous and inviscid flows using a composite

velocity procedure are presented. The velocity components of the
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compressible flow equations are written in terms of a multiplicative
composite consisting of a viscous or rotational velocity and an
! inviscid, irrotational, potential-=like function. This provides for an
efficient solution procedure that is locally reéresentative of both

asymptotic inviscid and boundary layer theories. A modified

NIIS HC

conservative form of the axial momentum equation that is required to

obtain rotational solutions in the inviscid region is presented and a
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combined conservation/non-~conservation form is applied for evaluation of

the reduced Navier-Stokes(RNS), Euler and potential equations. A
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variety of results are presented and the effects of the approximations
on entropy production, shock capturing and viscous interaction are

discussed.
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1. Introduction

The composite velocity formulation developed by Rubin and Khosla{1]

is a boundary layer like relaxation procedure based on a multiplicative
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composite velocity. For the Navier-Stokes or reduced Navier-Stokes

(RNS) equations it provides a technique that is consistent with both




asymptotic inviscid theory and boundary layer theory. The composite
velocity formulation is directly applicable to incompressible, subsonic,
transonic and supersonic flows. The Solution procedure is identical in
all cases. Supersonic regions are modelled with the Enquist-<Osher
approximation.

In this formulation a multiplicative composite for the velocities is
defined, see reference (1). A viscous or rotational velocity (U) and a

pseudo-potential or irrotational velocity (¢x, ¢ Y are specified. This

allows for the application of procedures developed for the transonic
potential equation to be adapted to a composite velocity Euler and RNS
formulation. Finally, the composite splitting provides for greater
flexibility, since the viscous and inviscid portions of the velocity
Tields are easily identified.

he composite velocity formulation has previously been used to
determine incompressible [2],subsonic and transonic [3«4] flows for
boattail geometries. Both laminar and turbulent flows were considered.
In these studies a coupled (U-~¢) strongly implicit procedure [5] was
used to solve the full Navier-Stokes equations. In the present study
application of the composite velocity technique for both viscous and
inviscid transonic flows are presented. For viscous flows a reduced
form of the compressible Navier-Stokes equations, in which the viscous
terms in the normal momentum equation and the streamwise diffusion terms
in the axial momentum equation are neglected, is considered. The
continuity and streamwise momentum equations are solved using a coupled
line relaxation procedure allowing for interaction between the boundary
layer and the outer inviscid flow. The Enquist-Osher flux biasing

scheme for the transonic potential equation is incorporated into the




solution procedure. Finally, a Cebeci~Smith two layer model [6] is used
for turbulence closure. This model is acceptable for the attached or
mildly separated wall layers considered herein.

Verification of solution accuracy, in the outer inviscid region of a
viscous interacting flow field, has been considered by solving the
inviscid Euler equations. The composite velocity equations are still
specified, but with slip boundary conditions and infinite Reynolds
number (Re). Both frrotational, isentropic (potential) solutions and
rotational, nonisentropic (Euler) solutions may be calculated with the
Re = » and slip boundary conditions. A conservation form of the
composite velocity equations is required for transonic Euler solutions;
a non-conservation form generates the full potential solution. The
conservation form for the Euler equations is shown to generate a correct
entropy rise at the shock wave, while the
generate spurious entropy in non shock regions.

2. Governing Equations

The Navier4Stokes equations for steady, compressible flow of a

perfect gas are given in general, orthogonal, curvilinear coordinates as

follows:
Continuity

(ph2h3u)E + (ph1h3v)n =0 | (1)

£-Momentum

puvh, = pE + (2)
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where ¢ and ¥ are the

dissipation and viscous work terms, respectively

and
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11 h1 £ h1h2 1 3D 23°°¢ 31 'n
t =2ufiv. ¢+ 2—h ]=-2E(nnu) + (hohv) ]
22 h1 E h,'h2 lz 3D 2 3°°E 31 'n
2 u ’
t,, = 2u[m—h, + =—n_] <% (nhu), + (h,h,v) ]
33 h3h1 3n h2h3 3n 3D 23°°¢ 31 'n
{h v hlu ]
T T, = ui—(—) —(=)
21 12 h1 h2 £ h2 h1 n
D = hlh2h3
1 oT 1 oT
q, = F: k 3 q, = 5; k 3n i W k «T

In these equations, £ and u are the coordinate and velocity measured

along the body surface; n and v are the coordinate and velocity normal

to the body surface;

temperature, and H t

h, are the metrics

3

additional state equa

equations. These are

p is the density, p the pressure, T the

he total enthalpy. The terms h‘(a.n). hz(e,n). and

for the curvilinear coordinate system. Two

tions are required to complete the governing set of




p =5 (5)

and

p YO-nmMi(s-1)
v " ™ e
P o

(6)

where S is entropy.

The composite velocity formulation procedure developed by Rubin and
Khosla[l] is employed to represent the velocity fields. 1In the spirit

of matched asymptotic expansions, the velocities are re-written as

(Uu+1)
us= —F;--(1+¢E) = (Uﬂ)ue (7a)
¢
n
Ve = (7b)
h2

The multiplicative composite that represents the axial velocity consists
of two terms, an irrotational "pseudo" potential function and a viscous
velocity U. Since the change in v across the boundary layer {s of the
order of the boundary layer thickness, the normal velocity is determined

solely by the "pseudo" potential function.

By substituting equations (7 a,b) into the Navier-Stokes equations

(1-3), the following system for U, ¢, S for 2-D (h3-1) conformal (hz'hy)

coordinates is obtained:

Continuity

[p<u+1)<1+¢5)15 + foe ] =0 (8)

£-Momentum

L [}
5[(ph2(U2+U)ue’) + (ph1Uuev)n] ¢ & Uuu, + (9)
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The new variablé G, that appears in these equations is similar to the
total (or Bernoulli-like) pressure. G is not, however, assumed to be
constant, but is calculated by the solution procedure. The entropy S is
zero in the undisturbed flow. |

In the viscous region, the composite velocity formulation is
representative of the full or reduced form of the Navier«Stokes
equations. The continuity and {<momentum equations determine ¢ and U
and the viscous total pressure correction is determined from the n-
momentum equation. In the 1limit as U+0 the continuity equation reduces
to the full potential equation and the Bernoulli relation, G=constant,
is recovered. Thus, equations (9) and (10) are identically satisfied
and the composite velocity system has reduced to the expected
representation for an inviscid, irrotational flow.

Inviscid flows are.solved by dropping the viscous terms in equations
(9) and (10). The interpretation of the composite velocity terms for
inviscid flows varies slightly from that for viscous flows. The ¢ term
still represents an irrotational "pseudo®" potential function. The U
term, however, 1s no longer assoclated with the viscous effects but
rather it reflects with the effects of rotationality associated with the

inviscid flow; viz,the vorticity o = (hZV)E_(hIU)n - ‘(U(1+¢E))n.




The composite velocity scheme is formulated to provide solutions to
the full Euler equations; 1f the system is solved in the non-
conservation form, however, the full potential solution is recovered
instead; i.e., U=0 everywhere and neither entropy nor vorticity is
generated at any point in the flow field. This includes leading and
trailing edges as well as captured shock waves. In order to capture the
rotational or (Euler) shock wave in transonic flows, the E-momentum
equation must be rewritten in a quasi4conservation form. This 1is
obtained by substituting for S and G in the right hand side of equation

u
(9), i.e., subtract, from the right hand side, F—%— times the contlnu;ty

12

equation. This gives the following 'conservation' form for the g~

momentum equation:

1 1 A
=| {ah_(U2+2U)u? - =
D[(,nZ‘u +-L)Je)£ + (ph1Uuev)n] + Dpueth‘n (11)

h h1

2
-1 2 - 1 E 2 4 2 - .__n
ET(P +pu )E ﬁ; (puev)n + -5-(pv pue) 2.0 5 (puev).

For subsonic flows (U=0) and a cartesian grid (h,-hzal.o). equation

(11) reduces to the familiar conservation form of the £-momentum

equation, i.e.,

(12)

2 -« 0
(P + pue) + (puev)n

g

For transonic flow the correct entropy rise at the shock wave will now
be generated. Although the correct entropy rise is predicted at the
shock with the system (11), spurious entropy is also generated in non-
shock regions. The generation of numerical entropy is a common problem
found in many Euler solvers. Large errors in entropy ﬁay be generated

at leading and trailing edges(7]. These errors may even lead to




spurious unsteady or steady solutions [8]. In the present technique a
simple solution to this problem is available. The nonconservative form
of the axial momentum equation (9) produces no entropy, but will
accurately convect entropy or vorticity that is generated elsewhere.
Therefore, this form of the axial momentum equation is used everywhere
except in the shock region, where equation (11) is required. This leads
to a solution procedure with the desirable feature of generating the
correct entropy rise at the shock wave, but not creating spurious
entropy in other regions of the flow. The advantage of non“conservative
equations away from shock waves and combined conservative/non-
conservative systems has been discussed in several studies by other

investigators[21].

3. Boundary Conditions

As a simple test case, solutions for symmetric flow over a NACAOO12
airfoil are obtained. The boundary conditions for the composite

velocity formulation are easily implemented. At the inflow, s-go.
uniform flow is assumed; thus U=0, H-He. ¢=0, and S=0. The upper

boundary , n=n_. is assumed to be sufficiently far from the airfoil so

that the flow field is undisturbed; therefore, similar boundary

conditions apply. Along the body, the viscous no+#slip and zero

injection conditions are used; therefore, U=-1 and ¢n-0. Ahead of the
airfoil and in the wake, the symmetry conditions Un=¢n-0 are imposed.
At the outflow, E-Em, only ¢E-0 must be prescribed. This, in effect,

assumes a weak viscous/inviscid interaction.
For inviscid flows, the no slip condition no longer applies and the

zero vorticity condition Un-O is specified along the airfoil. At the




outflow, g-gm, the boundary condition ¢=0 is imposed. The remaining

boundary conditions are unchanged.

4, Finite Differencing

The Enquist-Osher flux biasing scheme[9] for transonic flows has
been adapted for differencing the continuity equation. This schemé,
which has been developed for the full potential equation, produces very

sharp shocks and guarantees that expansion shocks do not occur. This

scheme consists of defining a modified density ;. such that

= - Ax '
P,y " Py ey (Gpa)_ 5 4 P2y yy ) (13)
where

R IR
(pq)_ =pa =p q irmMmz1

* * )
Here p and q. are the sonic velocity and density. The modified density

5 is then used in the [p(1 + ¢E)] portion of the E-derivative in the

continuity equation.

The [p(U+1)(1+¢E)]E derivative is approximated with a two point

backward difference and the ¢£ derivative is approximated with a two

point forward difference. The modified density ; is applied as

discussed previously. The [p¢n]n is differenced in a similar manner,

when v 1s less than zero. When the v velocity is greater than zero,

however, this term is forward differenced and ¢n is approximated with a

two point backward difference. Central differencing results for

subsonic regions.



In the E~momentum equation (9), the (phz(U’+U)u;)E derivative is

approximated with two or three point backward differences. For viscous
flows, upwind differencing is applied in regions of reversed flow. The
convective term is identically zero at the separation and reattachment

points. The (phZUuev)n and UeE (or p

EE) terms are approximated with

second order accurate central differences. For the SE and Gg terms on

the right hand side, two point baqkward differences are applied. When
the conservation form, equation (11), is used, a two point backward

difference is used for (p+pue’)E and central differencing is used for

(puev)n.

Backward differencing of the £-derivatives provides for the proper
convection of U in inviscid regions. If a value of U (i. e. vorticity)
is generated, this value will be convected downstream in one global
pass. Moreover, in the non-conservation form the value of the vorticity
is conserved and additional numerical vorticity is not generated even at
the trailing edge of an airfoil.

The discretized continuity and g-momentum equations are solved for U
and ¢ with a coupled line relaxation procedure. The values of p, S, and

G in the equations are given from the previous iteration. From the

values of U and ¢, the entropy variation is determined from the n-

momentum equation. This equation {s solved using the standard

trapezoidal rule.

For the large Reynolds number moderately separated flows considered

herein, a Cebeci-Smith two layer eddy viscosity model is used to close

the system of governing equations. The coefficient of viscosity is

given as
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Bomou ot | (14)
where "l is the laminar viscosity and ut is the turbulent eddy

viscosity, as prescribed by the Cebeci-Smith model. Details of this
closure model are found in reference 3. The onset of turbulence was
.
specified at 5% of the chord. The actual transition location is not
well known, but is approximated reasonably with the present assumption.
5. Results

Viscous and inviscid solutions for transonic flow have been obtained
for the symmetric flow over a NACA0012 airfoil. A Schwartz<Christoffel
mapping procedure developed by Davis [10] generates the required grid,
figure 1. The flow regibn is defined from an upstream location of
E=-4.6 to an outflow boundary £=6.89. The airfoil is located between
gE=0.0 and £=1.0. In the tangential direction; 105 grid points are
prescribed; this includes 60 points on the body, 20 points ahead of the
body, and 25 points aft of the body. A‘unirorm mesh is defined on the
body and a mesh stretch factor of 1.18 is used ahead of and aft of the
body. In the n direction, there are 50 grid points, so that the flow
region extends from n=0.0 to n=22.0. For viscous flows, an initial grid
spacing of An=0.0001 is prescribed; a stretch factor of 1.25 is assumed
for the remaining mesh development. For inviscid flows, the initial
grid spacing in the n-direction is An=0.02, since the boundary layer
need not be resolved.

To verify that the algorithm correctly calculates the inviscid

portion of the flow, a full potential solution for M_=0.85 is obtained.

Full potential solutions are obtained directly from the set of equations
(8-10) by solving the axial momentum equation in the non-conservation

form given by equation (9). In this form, U and S are calculated to be

11




identically zero and therefore the full potential solution is recovered
for ¢. The present solution is compared with results of the GAMM
workshop on transonic flows [11], figure 2. The workshop results
indicate a wide variation in shock location and strength and the figure
depicts only the lower and upper bounds of the workshop solutions.
Comparison with other potential solutions, in the published literature
and for the same case, indicate that this scatter of solutions to the
full potential‘equation is not unusual, figure 3. The present
calculation produces a very sharp shock and the shock falls within the
band of solutions presented at the GAMM workshop.

Next, the alternate form of the axial momentum equation (12) is

implemented in the shock region so that Euler solutions can be obtained.

A comparison of a M.-O.S solution, with results given by Clarke

et.al.{19] is shown in figure 4. The solutions are seen to be in good
agreement with the present results, which predict a slightly sharper
shock. Figure 5 presents a comparison of the present solution with the

GAMM workshop results for a M’-0.85 case. The band of solutions for the

Euler case is seen to be much smaller than that for the full potential
equation and again only the upper and lower bounds of solutions are
pf‘esented. The present solution falls within this band and produces a
sharper shock than those given in the workshop results.

In figure 6, the entropy generated along the airfoil for the

M¢=0.85 case is compared with the value obtained from the Rankine-

Hugoniot shock relations. The agreement is seen to be excellent. Two
other important features should be noted. First, entropy is not

generated ahead of the shock region. Secondly, the entropy generated at

12




the shock i{s convected properly downstream with no additional increase
in entropy elsewhere. |

The primary goal of this work,_however, is to solve transonic,
viscous interacting problems. The potential and Euler examples
discussed herein have verified that the proper inviscid solutions are
accur'ai:e, and therefore, should provide accurate outer flow behavior for
full viscous calculations. The next set of results s;lll describe

solutions to the RNS equations for a variety of freestream Mach numbers

and for a Reynolds number, Re=4x10°%, Comparison of these solutions for
an irrotational (potential) outer inviscid flow model and for a
rotational (Euler) outer model flow is included in the discussion.

Results for M_-O.8 are presented in figures 7a-c. 1In figure Ta the

pressure coefficient is shown. Little difference is seen between the
solutions with potential or Euler outer flows models. These results are
also compared with exﬁerimental data [20]. The computed solution shows
good agreement with the experimental resuits. except that the shock lies
slightly aft of the experimental data. The skin friction coefficient
for both outer flow conditions 1s compared in figure 7b. The effect of
the outer flow is much more pronounced for the skin friction than was
the case for the pressure coefficient. The skin friction has a much
smaller decrease through the shock for the Euler outer flow. The
oscillations in the skin friction coefficient at the leading edge are
due to a lack of grid resolution and vanish at 10% of the chord.

Finally, the Mach contours for MQ-O.B are given in figure Tec.
Results for MQ-O.BB are presented in figures 8a-c. The pressure

coefficient, figure Ba, is once again insensitive to the potential or

Euler outer flow modeling, except in the post shock region where the

13




Euler outer flow provides a somewhat different character than that
obtained with the potential outer flow. The computed results again show
the shock located slightly aft of the experiméntal data. Also, the
experimental results shbw a small increase in pressure ahead of the
shock, which is not seen in the computed results. Only the Euler outer
flow model provides the proper flow character after the shock. The
reason for the difference in solutions after the shock can be seen from
the skin friction results, figure 8b. The solution with a potential
outer flow model has a small separated region after the shock. The
solution with an Euler outer flow model does not separate and the skin

friction is somewhat larger. Mach contours for the M_-0.83 case are

given in figure 8c.
The importance of the outer flow model becomes more apparent for the

ach number Hu=0.85. These results are given in figures 9a-c. The

shock obtained with the potential outer flow model lies ahead of the
shock obtained with the Euler outer flow model and again predicts a
different post shock behavior. The skin friction coefficient figure 9b,
shows that the Euler outer flow model leads to a rapid recovery after
the shock with only a small separation region; the potential outer flow
model produces a large region of separation. The rotationality in the
The Mach

outer flow appears to suppress the tendency toward separation.

contour plot is given in figure 9c. Experimental results are not

available for this case.

The potential, Euler, and RNS (Euler outer model) results for M.-O.B
and M’-O.BS are compared {in flguées 10 and 11, respectively. For

M°=0.8, the three solutions agree fairly well, with the Euler and RNS

14




solution being slightly weaker and lying forward of the potential shock.
The rotational and viscous effects are of {ncreased importance for the

larger Mach number MQ-O.BS. The Euler shock is weaker and lies forward

of the potential shock. The RNS shock lies forward and is slightly
weaker than the Euler shock. For the larger Mach numbers, shocks
obtained from the full potential solution are too strong and are located
far downstream of the RNS (Euler outer flow) results.

6. Summary

The composite velocity solution procedure has been applied for both
viscous and inviscid transonic flows. Results are presented for fiow
over a NACAQ012 airfoil. The results demonstrate the versatility of the
composite velocity procedure. Both viscous and inviscid flows are
solved from the same formulation with a simple change in the boundary
conditions,

For inviscid flows, both irrotational potential solu;lons and
rotational Euler solutions are obtained. For the Euler model, the axial
momentum equation is given in a full conservation form in thé Shock
region. This provides a solution technique that produces the correct
entropy rise at the shock and at the same time convects the entropy
accurately; no spurious entropy is created outside of shock regions. The

potential and Euler solutions were found to agree with earlier results

presented for the inviscid models.

Solutions for the RNS equations are obtained with potential and
Euler outer models for a variety of Mach numbers. The results agree
quite well with experimental results. The form of the outer flow model
affects the post shock solution. Solutions with an irrotational outer

flow tend to more readily induce post-shock separation, than do the

15



solutions with rotational outer flow modelling. The ability of the
composite velocity pjocedure to efficiently calculate high Reynolds
number transonic viscous flows attributes to the robustness of the
solution technique.

Finally, the results for potential, Euler, and RNS (Euler outer
modelling) solutions for several cases are compared. For higher Mach
numbers, the Euler and potential solutions produce stronger shocks that
are located further aft on the airfoil and do not accurately reflect the
shock behavior,
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